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Abstract—Molecular communication (MC) enables communi-
cation at the nanoscale where traditional electromagnetic waves
are ineffective, and accurate signal detection is essential for
practical implementation. However, due to the lack of accurate
mathematical models, statistical-based signal detection methods
are not applicable, and existing deep learning-based models
exhibit relative simplicity in design. This paper integrates ideas
from natural language processing into MC and proposes the
MCFormer, a detector based on the classical Transformer model.
Additionally, we propose an accelerated particle-based simulation
algorithm using matrix operations for rapid generation of high-
quality training data with a lower complexity than traditional
methods. The experimental results demonstrate that the MC-
Former achieves nearly optimal accuracy in a noise-free environ-
ment, surpassing the performance of the Deep Neural Network
(DNN). Moreover, MCFormer can show optimal performance in
environments with significant levels of unknown noise. All the
codes can be found at https://github.com/Xiwen-Lu/MCFormer.

Index Terms—Molecular Communication, Detector Design,
Signal Detection, Simulation, Transformer.

I. INTRODUCTION

MOLECULAR communication (MC) is a field of com-
munication at the nanoscale, where information is

transmitted using molecules [1]. It holds significant potential
in various fields, such as targeted drug delivery [2]. The
accurate recovery of the original transmitted from the received
signal is crucial for the practical use of MC, which is similar
to radio communication systems. Initial attempts employed de-
coding approach using a single list of thresholds [3], however,
this method proved impractical as it requires comprehensive
communication model information. Subsequently, a Bayesian
approach based on the MAP method was applied [4], and this
method can work under the condition that only the molecular
arrival probability function is known.

Since precise channel models are often unavailable in MC,
researchers have started utilizing deep learning methods to
learn patterns from data and achieve signal detection [5]–[7].
Authors in [5] employed a neural network for signal detection,
while in [6], a vanilla recurrent neural network is employed
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to detect and decode the signals transmitted through the MC
channel. In [7], a modified temporal convolutional network is
proposed for signal detection for a special MC communication
system.

Existing analytical and numerical approaches have struggled
to effectively tackle the issue of inter-symbol interference (ISI)
in MC systems. This challenge has motivated the adoption
of natural language processing (NLP) tools in our work, as
these techniques have demonstrated the ability to selectively
focus on relevant information and mitigate the effects of ISI.
By leveraging the power of NLP [8], we recognize that ISI
in MC bears striking similarity to inter-word interference
in NLP, where adjacent characters in a sentence typically
exhibit a semantic relationship. This observation makes it both
reasonable and necessary to explore the direct application of
NLP approaches in the context of MC. Consequently, our
work represents the first attempt to introduce NLP methods,
particularly transformer techniques [9], into the field of MC.

The success of deep learning relies heavily on large quanti-
ties of high-quality training data. In this paper, we aim to gen-
erate training data by directly simulating the Brownian motion
process of particles. Although some previous works, such as
[10], [11], pursue similar concepts, using a plain multi-layer
cyclic approach can be excessively time-consuming for large
data sizes. To address this issue, we propose an accelerated
particle-based data simulation algorithm that leverages matrix
operations to generate training data more efficiently.

The primary contributions of this letter are as follows:
1) We are the first to operate MC signal detection from a

NLP perspective and propose a novel detector based on
the Transformer model, denoted as MCFormer, which
mitigates the effect of ISI in MC.

2) We introduce an accelerated particle-based data simula-
tion method that uses matrix operations to substantially
expedite the data generation process, which can greatly
reduce the complexity of deployment of this method in
MC system..

The remainder of this letter is organized as follows: Section
II presents the MC system model that we specifically analyze.
Section III introduces the proposed MCFormer receiver, which
is based on the Transformer model. Section IV outlines the
accelerated data simulation process. Section V presents the
conducted detector experiments and results. Finally, Section
VI summarizes our work and discusses potential directions
for future research.
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Fig. 1. MC system in 3-D space with a transmitter TN (yellow mass), a
receiver RN (purple sphere) and released molecules (green point).

II. MC SYSTEM MODEL

Fig. 1 illustrates the overall structure of our MC model,
with a point transmitter, a diffusion channel with flow, and a
spherical penetrating receiver.

A. Transmitter Model

In this letter, a common pulse-transmitted system with On-
Off Keying (OOK) modulation is studied. For each release
interval T , the transmitter TN releases M molecules when it
transmits bit ‘1’ at the ith time slot. si represents the signal
transmitted at the ith time slot.

B. Channel Model

Without loss of generality, this letter considers a diffusion
channel under uniform flow, where the motion of the particles
is affected by a uniform flow velocity v with Brownian motion
and the direction of flow is along the x-axis. The real-time
position of each particle (xt, yt, zt) can be calculated by
accumulating the incremental displacements per unit time ∆t:

(xt, yt, zt) = (xt−∆t, yt−∆t, zt−∆t) + (∆x,∆y,∆z). (1)

Here, the incremental displacement (∆x,∆y,∆z) satisfies:

∆x ∼ N (v∆t, 2D∆t),

∆y,∆z ∼ N (0, 2D∆t),
(2)

where D represents the diffusion coefficient.

C. Receiver Model

In the receiver section, we choose a passive receiver which
counted particles to study, such as [12]. Specifically, RN is a
sphere of radius r. The number of particles being observed in
the entire sphere region at the end of ith time slot ni is then:

ni = |SPi ∩ SRN|. (3)

Here, SPi is the set consisting of all particles at the ith time
slot, and SPi∩SRN is the intersection of SPi with the receiver
sphere space SRN. | · | denotes the set cardinality, indicating
the number of elements in the set.

As we can see from Fig. 2a, for the signal detection task,
with the decoding function F for the received molecules ni,

we can obtain the detected signal F(ni) corresponding to the
transmitted signal si, which can be denoted as ŝi. Based on
this, the decoding bit error rate (BER) for the whole signal
detection task can be obtained, as shown in Eq. 4, where L
is the length of the whole transmitted signal sequence S =
[s1, s2, · · · , si, · · · ].

BER = 1−
∑L

i=1 δ (ŝi, si)

L
(4)

It is noted that δ(i, j) is defined to be 1 if i = j and 0 if i 6= j.
According to [13], the theoretical received number of

molecules ni can be derived obeying a poisson distribution
π(M × p(t)), where,

p(t) =
VRN

(4πDt)3/2
· exp

(
−‖d− tv‖

2

4Dt

)
, (5)

Here, VRN is the volume of the receiver RN and d represents
the distance between TN and RN.

III. MCFORMER: DETECTOR IN MC BASED ON
TRANSFORMER

In this section, we introduce MCFormer to detect the
original transmit signal from ni whose backbone structure is
mostly based on Transformer, as shown in Fig. 2c. MCFormer
aims to reduce the effect of ISI in MC by leveraging ideas from
NLP and deep learning based signal detection methods.

A. Overall Framework

MCFormer, a model designed for processing MC data, has
been simplified from the original Transformer model to better
suit the differences between MC and natural language data.
The key adaptations include:
• Removing the input padding mask component, as simu-

lation data can be set to a fixed length before being input
into the network.

• Limiting the encoding vocabulary vector length and
reducing network parameters, since the input data of
molecular detectors has a finite numerical upper limit.

• Using simpler self-attention instead of multi-attention, as
MC is primarily affected by ISI rather than semantic
interference in natural language.

Despite these changes, MCFormer retains the standard NLP
operations like word embedding, self attention, and feed
forward network components, with the aim of adapting to the
MC domain. Further modification details on these components
can be found below.

B. Word Embedding

In the context of MCFormer, we apply word embedding
to convert the number of received molecules ni into a dense
vector representation. This process allows the input sequence
[n1, n2, · · · , ni, · · · ] to be transformed into a dense matrix,
which serves as the input for the whole receiver system. The
mathematical representation of word embedding is A·V , where
matrix A represents the one-hot form of the input sequence
vector. Vocabulary V encompasses the complete set of dense
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Q

KK

K

V

V V

0 1

R
ec

ei
ve

d 
M

ol
ec

ul
es

 n
i

desired signal

ISI signal

affect time

Fig. 2. (a) The pipeline of our solution for the signal detection task in MC. (b) The accelerated particle-based simulation process. (c) The structure of
MCFormer.

vectors for all distinct words, with each vector containing dm
values.

In the realm of NLP, there exist commonly used vocabular-
ies V [14]. However, given that there are no established word
vectors in the MC domain, we utilize a randomly initialized
vocabulary which will be integrated into the network and
trained concurrently. This approach allows the system to learn
the most effective representations for the MC data.

C. Self Attention

Attention serves as the most vital part, as it enables
MCFormer to learn and understand the global relationships
between different words within the context of MC. The overall
attention mechanism is outlined as [9]:

Attention(Q,K, V ) = softmax

(
QKT

√
dm

)
V (6)

where the weight of the value field (V) is obtained by dotting
the query field (Q) with the keyword field (K), and (·)T

represents the transpose of the matrix. In MCFormer, Q,
K and V are all set as the processed input matrix, which
is derived after applying the word embedding process. The
weight assigned to V , denoted as softmax

(
QKTdm

−1/2
)

,
plays a crucial role in establishing connections between the
number of molecules received at various time intervals ni.
This relationship corresponds to the ISI phenomenon in MC.

As a result of this attention mechanism, each data point
being processed can effectively incorporate information from
other points based on their similarities. This allows the model
to develop a more comprehensive understanding of the input
data, leading to a better overall representation of the MC
process. This contributes significantly to the MCFormer’s
performance in processing and interpreting MC data.

D. Feed Forward Network

The Feed Forward Network (FFN) is a fully connected layer
with one hidden layer. Both the input and output dimensions

of the FFN are dm while the hidden layer dimension, which
can be adjusted to optimize performance, is represented as
dh. Additionally, when data is processed through the FFN
after the attention mechanism, a residual connection is incor-
porated. This connection helps preserve the input information
by adding it to the output of the FFN simultaneously. This
enhancement leads to better overall performance and stability
in the training process.

By combining the attention mechanism, word embedding,
and the FFN with residual connections, MCFormer effectively
adapts standard NLP operations for the MC domain.

IV. ACCELERATED PARTICLE BASED DATA SIMULATION

Typically, particle-based solutions keep account of individ-
ual particles; in this manner, the complete trajectory of all
particles can be obtained, albeit at a slower rate. Especially
for detection tasks, it is not necessary to know the complete
trajectory of all particles. We propose a simulation algorithm
that operates as a matrix operation and includes an effect phase
in order to generate a dataset for the detection task rapidly.

A. Acceleration Algorithm with Effect Step

The complete algorithm is depicted in Algorithm 1, which
iterates through batches of particles as they are released. For
each batch of particles, we maintain a matrix that stores the
coordinates of each moment of the batch in a manner that
accumulates the motion’s displacements in a single step of
time, in a manner that resembles the simulation of the wiener
process. For moments where the particle’s coordinates fall
within the receiver’s range, a “1” is recorded to denote that the
particle was observed at that time. Eventually, the number of
received particles N is accumulated and sampled, yielding the
sequence of received particle numbers [n1, n2, · · · , ni, · · · ].

Notably, as the total time increases, so does the memory
overhead associated with storing the matrix. In order for
the simulation algorithm to generate data more robustly for
arbitrary amounts of time, we propose the variable of “effect
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step”, denoted Ke, which incorporates the decreasing character
of ISI in MC with increasing time. Specifically, Ke examines
the situation in which the number of particles observed at
time i is only affected by the particles released at time
[i, i−T, i−2T, ..., i−(Ke−1)T ]. As we can see from Fig. 2b,
the particles observed in the current time slot are in blue, the
ISI part is represented in grey, the simulation algorithm only
records the current time slot and time slots with a certain effect
step Ke for the ISI part. The effect time marked on the Fig. 2b
is the region of interest (ROI) which we will caculate in our
algorithm, denoted as NROI .

Algorithm 1 Accelerated Particle Based Data Simulation

Require:

signals sequence S = [s1, s2, · · · , si, · · · ]
release time interval T flow velocity v
RN center point coordinate Ps signals length L
num of molecules per release M
precision control parameter ε (0 < ε < 1)

1: Initialization Ntotal ← zeros (size = (LT ))
2: Calculate Ke = arg max

k∈N+
p(kT ), s.t. M · p(kT ) < ε

3: for i = 0 to L− 1 if si 6= 0 do
4: NROI ← zeros (size = (M,KeT ))

5: dx ← cumsum
axis=0

(
N
(
v∆t,

√
2D∆t, size = (M,KeT )

))
6: dy, dz ← cumsum

axis=0

(
N
(

0,
√

2D∆t, size = (M,KeT )
))

7: distance← sqrt

( ∑
axis=0

([dx, dy, dz]− Ps)
2

)
8: NROI [distance < r] = 1
9: Ntotal [iT : (i+Ke)T ] + = sum

axis=1
NROI

10: end for
11: //sample Ntotal with matrix slicing, i.e.[start:end:step]
12: N ← Ntotal [T − 1 :: T ]
13: return sampled number of received molecules N .

B. Performance Analysis

0 0.2 0.4 0.6 0.8 1
Time (s)

0

20

40

60

R
ec

ei
ve

d
M

ol
ec

ul
es

n i

Simulation result ni

Average simulation result n̄i

Derived n∗
i = M× p(t)

Sample result @ si = 1
Sample result @ si = 0

Fig. 3. Simulation results of ni by Eq. 3 when transmit signal suquence
s = [1, 0, 0, 1, 1].

The complexity of the cumulative sum function is
O(MKeT ), so the complexity of Algorithm 1 isO(LMKeT ),
which is more effective than the complexity ofO(LT ·LM) for
the previous method [10] of tracking all particle trajectories.
Furthermore, we compare the simulation results with the
theoretical results from Eq. 5 to test the accuracy of the
proposed simulation method. As shown in Fig. 3, the mean

TABLE I
THE PARAMETERS OF MOLECULAR COMMUNICATION SYSTEM

Parameter Symbol Value
diffucision coefficient D 79.4µm2/s [13]

flow velocity v 30µm/s
distance between TN and RN d 10µm

radius of RN r 1.5µm
release rime interval T 0.2s

released molecules per release time M 4000
precision control parameter ε 10−2

results curve over 30 simulation iterations closely matches the
theoretical curve, demonstrating the accuracy of Algorithm 1.
The parameters used to generate Fig. 3 are outlined in Table I.

By reducing computational complexity and memory usage,
this algorithm enables efficient generation of high-quality
training data, thereby facilitating the development of more
effective MC models.

V. EXPERIMENTS AND RESULTS

To achieve the goal of analyzing the effectiveness of MC-
Former in reducing ISI, we choose different drift velocity v
to compare the detect performance of MCFormer, a Deep
Neural Network (DNN), and an MAP decoder. Finally, the
BER performance of the detector was further assessed under
unknown noisy conditions.

A. Data Generation

Before performing performance tests on MCFormer, we
generate 9000 random signals for training and validation (7:2)
and 5000 signals for testing. The parameter settings during
data generation are the same as those shown in Table I, except
for the drift velocity v. We limit the input data length to
100 bits, i.e., each time we use [n1, n2, · · · , n100] of the ni
sequence as input to the network. Fig. 4a shows the boxplot
of some testing data.

B. BER testing with different drift velocity

For the BER performance of MCFormer under different
parameter v values to be explored, we use grid search to select
the optimal hyperparameters dm and the number of encoder-
decoders X in the network which is shown in Fig. 2c. The best
final performance is obtained when dm is set to 128 and three
encoders and three decoders are used. This hyperparameter
was fixed to compare the BER.

We also implement DNN [5] to compare with MCFormer
and the length of the input layer length of the DNN is set to
100 as well for a fair comparison. Additionally, the number
of layers in DNN is determined using grid search, as is the
number of neurons in each hidden layer. The single hidden
layer structure with 128 neurons has the lowest BER and is
ultimately used for comparison with MCFormer.

An optimal decoder MAP [7] with group length 10 is
implemented to be compared too, in which considers the ISI
between Ke numbers and this MAP decoder can be seen
as theoretically optimal detector . Fig. 4b shows that MAP
achieves lowest BER on almost all data, which is in line with
usual perception as it knows all channel information. MC-
Former achieves a close performance to MAP demonstrating



IEEE COMMUNICATIONS LETTERS 5

20 30 40 50
Drift Velocity v

0

20

40
R

ec
ei

ve
d

M
ol

ec
ul

es
n i Transmit signal si = 0

Transmit signal si = 1

(a)

20 25 30 35 40 45 50
Drift Velocity v

10−3

10−2

10−1

B
E

R

MCFormer
MAP
DNN

(b)

10 15 20 25 30 35 40
SNR (dB)

10−2

10−1

B
E

R

MCFormer
MAP
DNN

(c)

Fig. 4. Experiment results. (a) The boxplot at data with different drift velocity. (b) The BER performance comparison of MCFormer, DNN and MAP detector
with different drift velocity. (c) The BER performance comparison of MCFormer, DNN and MAP under unknown channel noise.

that Transformer-based methods with attention structure can be
well suit to attenuate the effects of ISI and thus can achieve
near-optimal decoding accuracy without any knowledge of the
channel information.

C. BER testing under unknown channel noise
To further test the performance of MCFormer under un-

known channel noise, Additive White Gaussian Noise was
introduced to the test sequence N = [n1, n2, · · · , nL].
Then the new input sequence to networks is N ′ =
[n′1, n

′
2, · · · , n′i, · · · , n′L], where n′i = ni + (nnoise)i and

nnoise ∼ N (0, σ2
noise), σ2

noise is variation of the added noise.

SNRdB = 10 log10(
Psignal

Pnoise
) = 10 log10(

∑L
i=1 n2

i

L

σ2
noise

) (7)

The Signal-to-Noise Ratio (SNR) is defined as the ratio of
the average power of the signal Psignal to the average power
of noise Pnoise in Eq. 7, where L represents the length of N.

Fig. 4c shows the results at drift velocity v = 40, which
illustrates the superiority of the MCFormer algorithm over
DNN, consistently achieving a lower BER across multiple
SNRs. Notably, MAP maintains its optimal performance in
low-noise scenarios, particularly when the SNR exceeds 30.
In high-noise environments where MAP lacks awareness of the
noise, MCFormer demonstrates enhanced performance. These
findings highlight the capability of our proposed detector,
MCFormer, to perform effectively even in the absence of
known channel information.

VI. CONCLUSION

In this paper, we propose MCFormer, a novel detector
design for MC based on the Transformer model. We also in-
troduce an accelerated particle-based simulation method using
matrix method to significantly speed up data generation which
can be widely used in similar simulation. In our detection
experiments, the results demonstrate the efficacy of applying
NLP techniques to MC, particularly in mitigating the impact
of ISI on signal detection. The proposed MCFormer model
achieves superior decoding accuracy compared to traditional
methods, and is able to handle large quantities of data in
a more efficient manner. The results also suggest that the
structure of NLP models can play an important role in
achieving better performance in MC tasks and warrants further
exploration.
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